Prostate Cancer Patients–Negative Biopsy Controls Discrimination by Untargeted Metabolomics Analysis of Urine by LC-QTOF: Upstream Information on Other Omics

نویسندگان

  • M. A. Fernández-Peralbo
  • E. Gómez-Gómez
  • M. Calderón-Santiago
  • J. Carrasco-Valiente
  • J. Ruiz-García
  • M. J. Requena-Tapia
  • M. D. Luque de Castro
  • F. Priego-Capote
چکیده

The existing clinical biomarkers for prostate cancer (PCa) diagnosis are far from ideal (e.g., the prostate specific antigen (PSA) serum level suffers from lack of specificity, providing frequent false positives leading to over-diagnosis). A key step in the search for minimum invasive tests to complement or replace PSA should be supported on the changes experienced by the biochemical pathways in PCa patients as compared to negative biopsy control individuals. In this research a comprehensive global analysis by LC-QTOF was applied to urine from 62 patients with a clinically significant PCa and 42 healthy individuals, both groups confirmed by biopsy. An unpaired t-test (p-value < 0.05) provided 28 significant metabolites tentatively identified in urine, used to develop a partial least squares discriminant analysis (PLS-DA) model characterized by 88.4 and 92.9% of sensitivity and specificity, respectively. Among the 28 significant metabolites 27 were present at lower concentrations in PCa patients than in control individuals, while only one reported higher concentrations in PCa patients. The connection among the biochemical pathways in which they are involved (DNA methylation, epigenetic marks on histones and RNA cap methylation) could explain the concentration changes with PCa and supports, once again, the role of metabolomics in upstream processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Untargeted metabolomics in doping control: detection of new markers of testosterone misuse by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry.

The use of untargeted metabolomics for the discovery of markers is a promising and virtually unexplored tool in the doping control field. Hybrid quadrupole time-of-flight (QTOF) and hybrid quadrupole Orbitrap (Q Exactive) mass spectrometers, coupled to ultrahigh pressure liquid chromatography, are excellent tools for this purpose. In the present work, QTOF and Q Exactive have been used to look ...

متن کامل

Metabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis

Objective(s): lupus nephritis (LN) is a severe form of systemic lupus erythematosus (SLE) with renal complications. Current diagnosis is based on invasive renal biopsy and serum antibodies and complement levels that are not specific enough. The current study aims to identify new biomarker candidates for non-invasive diagnosis of LN and explore the pathogenic mechanisms...

متن کامل

Urinary Volatile Organic Compounds for the Detection of Prostate Cancer

The aim of this work was to investigate volatile organic compounds (VOCs) emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA) level or abnormal findings on digital rect...

متن کامل

Ruminant Nutrition Symposium: Metabolomics Applications in Dairy Cow Metabolism

An overview is given on mass spectrometry-based metabolomics: past, current, and future developments. Understanding the metabolome is challenging due to the enormous diversity of metabolite structures. Metabolomics uses a range of tools, established as service at the NIH West Coast Metabolomics Center at UC Davis. We here explore the use of ion mobility spectrometry (IMS) in combination with li...

متن کامل

Classification of Chronic Kidney Disease Patients via k-important Neighbors in High Dimensional Metabolomics Dataset

Background: Chronic kidney disease (CKD), characterized by progressive loss of renal function, is becoming a growing problem in the general population. New analytical technologies such as “omics”-based approaches, including metabolomics, provide a useful platform for biomarker discovery and improvement of CKD management. In metabolomics studies, not only prediction accuracy is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016